Make Magazin

Zwei Ausgaben der aktuellen Make.

Das ist natürlich kein Zufall. Die eine kommt über’s Abo (seit der ersten Ausgabe – ist ja klar). Die andere habe ich als Freiexemplar bekommen, weil es dieses mal einen Artikel mit meinem Namen darunter gibt. Make 2/17, Artikel “USB-Trommel”, ab Seite 90.

Geilomat 8000!

die Sache hat sich vor ein paar Monaten ergeben, nachdem ich über die Webseite vom Heise-Verlag auf ein paar meiner Projekte hingewiesen hatte. Felix (Redakteur) hat sich daraufhin bei mir gemeldet und ich habe etwas geschrieben. Simple as that. Von meinem originalen Text, im Wesentlichen ist das der Baubericht für die Drums, ist natürlich nicht mehr all zu viel geblieben. Is’ eben doch ein Unterschied, ob man das hauptberuflich macht, oder hin und wieder mal einen Text ins Netz rülpst.

 

Macht aber nix. Die Zusammenarbeit hat enormen Spaß gemacht und der Moment, wo man den eigenen Namen unter einem Artikel sieht, ist schon ganz schön cool.

Ich bin jetzt quasi ein echter Journalist =)

 

Motion-Sensor-to-MIDI-Converter

An idea that came up during the 31C3. The guys from VisualPhi had some motion sensors lying around and wanted to use them to control their VJ-software. That’s why I built them a Motion-Sensor-to-MIDI-Converter.

As usual it all starts on a breadboard. Most of the times I draw the schematics parallel to building the circuit on a breadboard. Guess that’s the usual way.

CIMG0230

 

 

The circuit itself is rather unspectacular. 8 inputs are polled from a 74HC165. Then there’s a little bit of logic implemented within an Arduino and then there’s 16 LEDs, a rotary encoder and MIDI out.

CIMG0231

 

CIMG0233

 

 

This project is the first one to benefit from my new 3D Printer. Due to the fact that I don’t have a dedicated toolshed anymore it’s kind of impossible to reliably manufacture the case anymore. Seems as if I don’t need one from now on.

CIMG0261

 

I really think the fixation of the rotary encoder is one of the smartest pieces ever done by mankind. Ever =)

CIMG0264

 

CIMG0263

 

The LEDs are driven via Charlieplexing. It’s rather easy to implement but you really need to concentrate while soldering. By the way: If everything else fails I guess I’ll become a Soldering-Artist one day.

CIMG0269

 

The function of the device is easy to explain. Every input is triggered when the state of a connected switch changes. This is indicated by the red LED below the channel. The green LEDs indicate the channel that’s influenced by the rotary enoder: The encoder gives the possibility to set the time that has to pass from the moment the input is triggered until it can be retriggered again. Something like a ‘Retrigger Threshold’. The value can be set to values between 0 and ~2 seconds. When the lower / upper limit of the value is reached the green LED flashes. Pressing the rotary encoder (it has a built-in switch) switches to the next input.

A triggered input sends a MIDI note.

CIMG0266

 

 

 

CIMG0276

 

 

 

CIMG0275

How to use Traktor Audio 6 with Ableton

I don’t know why I have never encountered this problem before but recently I tried to use my Traktor Audio 6 together with Ableton and had a fair share of problems. Basically I couldn’t route Ableton’s output to anything different then ‘Output 1&2’ which is the main output at the Audio 6’s front side.  Everything else could be selected but just didn’t take effect (Ableton wasn’t even showing any kind of levels).

Same problem on the inputs: I have two turntables attached to the Audio 6 and wanted to use their inputs within a vst-plugin (MsPinky, as you may have guessed) but I just wasn’t able to get any signals coming into Ableton.

Of course the settings in Ableton all were correct. The screenshot only shows the output config but the input settings were accordingly.

 

I had a simple clip running on a track and changed the Master Out settings a few times. Whatever I tried it only sent out real music (into my mixing desk) when I selected channel ‘1/2’ for Master out. 3/4 and 5/6 just kept being numb.

 

The problem behind all this is that the Audio device’s input settings for both channels 3/4 and 5/6 was set to ‘direct thru’. Meaning: Everything that is connected to the inputs is directly routed to the outputs. The device itself is not able to send audio data to these outputs in this case. Looking at it from a little distance it’s something I could have known before because every time I had Traktor Scratch running and attached the Audio 6 to my computer I was presented with a ‘direct thru’-configuration for both decks. I had to deactivate this every time I used it.

 

The solution is simple: Just open up the Audio 6 Control Panel and deactivate the checkbox for ‘direct thru’-mode. It’s probably a good idea to do this in the ‘startup’ tab since this changes the device’s configuration to behave like this automatically every time you connect it to your computer.

 

I don’t know if it’s necessary to do a reboot afterwards. While trying to find this solution I made so many of them I don’t know for sure.

Anyways: After making these steps I was able to select every possible input and output combination for my Audio 6 in Ableton – and all of them worked like a charm.

Easy Button USB hack

I guess everybody knows the Staples Easy Button.

There are numerous hacks out in the wild adding some weird functionality to it. For quite some time I wanted to something similar. This is the documentation of how to make the Easy-Button a MIDI-USB device based on Atmega328 (Arduino).

Many hacks have in common that they are either relatively expensive (like…involving something with a dedicated teensy device) or rather ugly (due to holes just being sawed into the Easy Button’s case).

 

My first goal was to build a device that automatically identifies itself as an HID-compliant USB-MIDI device and gives simple MIDI functionality by using an Atmega328 and V-USB. In order to achieve a correct enumeration and to get a useful starting point I used the demo-versionof USBLyzer to get the necessary data from my KORG nanoKey and altered them in various places (Vendor ID etc..). (You will remember this one later.)

When the button is pressed a ‘MIDI Note ON’ signal is sent. Upon release it sends a ‘Note OFF’ message.

The second goal was to give it a clean overall look.

Let’s see…

 

This is the Staples Easy Button with the cap and the clicker already being removed (which makes it just a pretty unidentifiable bunch of electronics and some plastic)

 

we don’t need the speaker so it will be gone soon….

 

The black line shows how deep the cap goes when it’s pressed.

 

This is the spot where the USB connector will be placed

 

 

 

 

I might not be the best craftsman around (already mentioned that once before) but after some filing this one looks pretty decent:

 

 

The plastic on the inside has to be cut as well

 

 

This DOES look quite well

 

Now I need to add the circuit board. Due to the speaker being thrown out there is lots of space for that now.

 

The circuit is basically a 1:1 copy of the V-USB keyboard example. The Button is connected with data pin 6 of the Atmega. It involves some creative soldering of the diodes because I didn’t care too much about the circuit’s layout before I started soldering.

 

Everything’s coming to an end soon

 

It seems impossible for my camera to do any decent shots that contain the color red.
Anyway, you might get an idea of how the circuit fits into the structure.

 

 

Some detail of how the actual button-mechanism is connected to the Atmega (the blue wires, you guessed it)

 

To make future additions a little easier I added an ICSP connector which fits nicely into what has formerly been the battery case

 

Finally… in all its glory.

 

I had this in the back of my mind for ~2.5 years now. Shortly before starting with this built I started wandering whether this might make sense or be worth the money or time invested or…..

F*CK IT.  Never let doubts get in the way of your creativity.  If this wouldn’t make sense than I probably wouldn’t have built it. Word!   =)

 

 

The whole Arduino project (I did that arduino IDE 1.0.3) can be downloaded here. Unzip and copy the folder ‘Nanokey’ to the libraries-folder of your arduino IDE. Feel free to contact me if anything is left unclear.